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Abstract

Purpose – The purpose of this paper is to investigate an active flow control technique called Shock
Control Bump (SCB) for drag reduction using evolutionary algorithms.

Design/methodology/approach – A hierarchical genetic algorithm (HGA) consisting of
multi-fidelity models in three hierarchical topological layers is explored to speed up the design
optimization process. The top layer consists of a single sub-population operating on a precise model.
On the middle layer, two sub-populations operate on a model of intermediate accuracy. The bottom
layer, consisting of four sub-populations (two for each middle layer populations), operates on a coarse
model. It is well-known that genetic algorithms (GAs) are different from deterministic optimization
tools in mimicking biological evolution based on Darwinian principle. In HGAs process, each
population is handled by GA and the best genetic information obtained in the second or third layer
migrates to the first or second layer for refinement.

Findings – The method was validated on a real life optimization problem consisting of
two-dimensional SCB design optimization installed on a natural laminar flow airfoil (RAE5243).
Numerical results show that HGA is more efficient and achieves more drag reduction compared to a
single population based GA.

Originality/value – Although the idea of HGA approach is not new, the novelty of this paper is to
combine it with mesh/meshless methods and multi-fidelity flow analyzers. To take the full benefit of
using hierarchical topology, the following conditions are implemented: the first layer uses a precise
meshless Euler solver with fine cloud of points, the second layer uses a hybrid mesh/meshless Euler
solver with intermediate mesh/clouds of points, the third layer uses a less fine mesh with Euler solver
to explore efficiently the search space with large mutation span.
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1. Introduction
The drag reduction of transonic civil aircraft is one of the most important tasks in
aerodynamics design. Despite continuous efforts in aerodynamic shape design over last
two decades, the drag reduction at a given flight condition remains a critical challenge to
aircraft designers (Qin et al., 2004, 2008; Lee et al., 2010). To improve drag reduction
substantially, it is crucial to use a methodology that couples an efficient optimization
method with an accurate computational fluid dynamic (CFD) analyzer.

In this paper, a methodology that combines hierarchical genetic algorithms
(HGAs) (Sefrioui and Périaux, 2000; Pettey et al., 1987; Gorges-Schleuter, 1992;
Schlierkamp-Voosen and Muhlenbein, 1994) and mesh/meshless methods (Batina, 1992;
Belytschko et al., 1994; Ghosh and Deshpande, 1995; Morinishi, 2001; Chen and Shu,
2005; Chen, 2003; Luo and Baumy, 2005; Ma et al., 2006) to improve the optimization
efficiency in terms of solution accuracy and computational cost is developed. This study
investigates among several active flow control techniques one device called shock
control bump (SCB) (Qin et al., 2004, 2008; Lee et al., 2010) which was introduced earlier to
generate a pre-shock isentropic compression wave in order to reduce the total drag over
the airfoil at transonic speeds.

Iterative CFD methods for solving the Euler equations using traditional mesh
methods have been pioneered by Godunov (1969) in the late 1960s and popularized by
many CFD investigators like (Van Leer, 1979; Roe, 1981; Osher, 1983; Jameson et al.,
1981, 1986; Pulliam and Steger, 1985, 1986; Berger and LeVeque, 1989) and many others
who pointed out successively numerous theoretical and numerical inherent advantages.
Concurrently, meshless methods which allow more flexibility for computing flows
around complex configurations by replacing the mesh topology constraint by clouds of
points have been actively pursued in different application fields since the late 1970s
(Batina, 1992; Belytschko et al., 1994; Ghosh and Deshpande, 1995; Morinishi, 2001; Chen
and Shu, 2005, 2003; Luo and Baumy, 2005). More recently, a hybrid mesh/meshless
algorithm has been introduced. The method uses a weighted least squares (WLS) fitting
of the conserved flux variables using clouds of points in the vicinity of the body and a
finite volume method (FVM) in the rest of the computational domain (Ma et al., 2006).

Over the past two decades, evolutionary algorithms (EAs) have become one of the
most widely used optimization methods. Many researchers have proposed innovative
approaches (cf. Goldberg, 1989; Deb, 2002; Michalewicz, 1992; Miettinen, 1999,
among many others). The HGA (Sefrioui and Périaux, 2000; Pettey et al., 1987;
Gorges-Schleuter, 1992; Schlierkamp-Voosen and Muhlenbein, 1994) studied in this
paper use three hierarchical topological. The top layer has a single population with two
child populations in the intermediate layer, which in turn have two child populations
on the bottom layer resulting in a total of seven populations. The HGAs allow the use
of multi-fidelity flow analyzers as follows: high fidelity models on the top layer;
intermediate fidelity models on the intermediate layer and low fidelity models on the
bottom layer. In the HGA optimization procedure, each population is handled by a GA
and the best genetic information obtained in the lower layers migrates to the closest
upper layer for refinement, respectively.

In order to take a full benefit of hierarchical topology, each layer uses a different flow
model and a different level of discretization. The following mathematical models are
implemented: the top layer uses a precise meshless or mesh Euler solver with fine cloud
of points or mesh elements, respectively. The middle layer uses a hybrid mesh/meshless
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Euler solver with intermediate mesh elements/clouds of points. The bottom layer uses a
mesh Euler solver with a coarse mesh in order to explore efficiently the search space with
a large mutation span.

Two applications are considered in this paper. First, a CFD position reconstruction
problem for a single NACA0012 airfoil is studied. The second test case concerns the
shape optimization of a single RAE5243 airfoil at fixed lift with a Bézier spline
parameterized SCB. Numerical results illustrate how the optimal shape of the SCB can
modify and control the flow features over an airfoil at transonic speeds and how
the total drag is reduced compared to the drag value of the baseline design. The above
methodology demonstrates also how HGAs can improve the efficiency of the
optimization in the terms of computational cost and design quality.

The content of the paper is organized as follows. Section 2 introduces the fast artificial
dissipation (AD) adjusted meshless method for solving the nonlinear PDEs Euler
equations and a dynamic cloud strategy based on Delaunay graph mapping used to move
points during the optimization procedure. In Section 3, the HGA-based evolutionary
optimization using mesh and meshless Euler models with different discretization levels is
described in detail and is validated using a simple position reconstruction problem.
Section 4 presents the results of a practical CFD application, reduction of wave drag
around an airfoil by optimizing the shape of an SCB. Finally, Section 5 concludes overall
numerical results and suggests future lines of research extending the present paper to
more complex models and applications.

2. Methodology: a meshless Euler analyzer
2.1 Governing equations
The Euler equations represent the conservation principle for mass, momentum and
energy of inviscid fluids. In a two-dimensional Cartesian coordinate system, the Euler
equations are expressed in the following form:

›W

›t
þ

›E

›x
þ

›F

›y
¼ 0 ð1Þ

where t is the time, (x, y) are the Cartesian coordinates. The vectors of conservative
variables W, convective fluxes E and F have the following components:

W ¼

r

r u

r v

e

2
666664

3
777775 E ¼

ru

r u 2 þ p

r uv

ðeþ pÞu

2
666664

3
777775 F ¼

rv

ruv

r v2 þ p

ðeþ pÞv

2
666664

3
777775 ð2Þ

where r is the density, u is the x-velocity component, v is the y-velocity component, p is the
pressure, and e is the total energy per unit volume. For an ideal gas, e can be written as:

e ¼
p

g2 1
þ

1

2
r ðu 2 þ v 2Þ ð3Þ
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where g is the ratio of specific heat. Additionally, the equation of state is given by:

p ¼ r �RT

where T is the static temperature and �R is the ideal gas constant.

2.2 Spatial discretization
The WLS method (Chen and Shu, 2005) is used to approximate the spatial first order
derivatives, and in cloud C(i ), equation (1) becomes:

›W

›t

����
i

þ
›E

›x
þ

›F

›y

� �
i

¼ 0 ð4Þ

For the convective fluxes, let:

Q i ¼
›E

›x
þ

›F

›y

� �
i

ð5Þ

According to the WLS method, the above formula can be written as:

Q i ¼
X

aikE ik þ
X

bikFik ð6Þ

where aik and bik are the coefficients obtained by the WLS method. Adding equations
(6) to (1), the approximated governing equation can be written as follows:

dWi

dt
¼ 2ðQ i 2D iÞ ð7Þ

where (Blazek, 2001):

D i ¼
XN
k¼1

dik ð8Þ

dik ¼ 1
ð2Þ
ik ðWk 2W iÞ2 1

ð4Þ
ik ð7

2Wk 2 72WiÞ

1
ð2Þ
ik ¼ K ð2Þlikmaxðni; nkÞ

1
ð4Þ
ik ¼ likmax 0;K ð4Þ 2 1

ð2Þ
ik

h i
ni ¼

72Pij jPN

k¼1
ðPiþPkÞ

72Wi ¼
XN
k¼1

Wk 2 NWi

ð9Þ

lik ¼ aikuþ bikvj j þ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
ik þ b2

ik

q
ð10Þ

where c ¼
ffiffiffiffiffiffiffiffiffiffi
gp=r

p
is the local speed of sound and N is the total number of could of

points in node i.
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2.3 Temporal discretization
In cloud C(i ), the semi-discretized Euler equations are written as follows:

›W

›t

����
i

¼ R i ð11Þ

where Ri is the residual value. An explicit scheme is used for time discretization on the
above equation yielding:

Wnþ1
i 2Wn

i

Dt
¼ Ri ð12Þ

The superscripts n and (n þ 1) denote the time levels. Here Wn refers to the flow
solution at the present time t, and Wnþ1represents the solution at the time (t þ Dt). An
explicit five-stage Runge-Kutta time integration scheme is used:

Wð0Þ
i ¼ Wn

i

Wð1Þ
i ¼ Wð0Þ

i þ a1DtiR
ð0Þ
i

Wð2Þ
i ¼ Wð0Þ

i þ a2DtiR
ð1Þ
i

Wð3Þ
i ¼ Wð0Þ

i þ a3DtiR
ð2Þ
i

Wð4Þ
i ¼ Wð0Þ

i þ a4DtiR
ð3Þ
i

Wð5Þ
i ¼ Wð0Þ

i þ a5DtiR
ð4Þ
i

Wnþ1
i ¼ Wð5Þ

i

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð13Þ

where ak(k ¼ 1, 2, 3, 4, 5) represents the stage coefficients:

a1 ¼
1

4
; a2 ¼

1

6
; a3 ¼

3

8
; a4 ¼

1

2
; a5 ¼ 1

The major disadvantage of the explicit scheme is that the time step Dti is restricted by
the Courant-Friedrichs-Lewy (CFL) stability condition.

2.4 Acceleration techniques
In order to accelerate the convergence, a local time stepping method and an implicit
residual averaging method are employed in this study.

The local time step Dti of discrete point is given by the following equation (Blazek,
2001):

Dti ¼
CCFLPN

k¼1 aikuþ bikvj j þ c
ffiffiffiffiffiffi
a2
ik

q
þ b2

ik

ð14Þ

where CCFL denotes the coefficient of CFL.
In the time marching equation, let Ri represent the residual at node i. In the meshless

method, a new residual can be given by (Blazek 2001):
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R0
i ¼

Ri þ 1
PN

k¼1R
0
k

1 þ 1N
ð15Þ

where 1 ¼ [0.2, 0.5]. It can be accomplished by performing two Jacobi iterations.
The parameter N refers to the total number of cloud of points in node i. The above
technique allows the CFL number to be increased to two or three times when compared to
the unsmoothed value. In the present study, the CFL number is increased from 2

ffiffiffi
2

p
to 5.

2.5 Dynamic cloud method based on Delaunay graph mapping strategy
In order to simulate the relative movement of boundary geometries in inverse and
shape optimization problems, it is required that the cloud of points has the ability to
move with the rigid body boundaries. Hence, a fast and efficient dynamic cloud method
based on the Delaunay graph mapping strategy (Liu et al., 2006) is adopted here.

As shown in Figure 1, a Delaunay triangulation of the computational field is set up by
using the given points located on the boundaries for a NACA0012 airfoil. Then, the
triangulation is contained for every point P(x, y) in the computational field. If the points
of every element are notated as E1(x1, y1), E2(x2, y2), E3(x3, y3), the coordinates of point P
can be expressed as:

x ¼ a1x1 þ a2x2 þ a3x3

y ¼ a1y1 þ a2y2 þ a3y3

(
ð16Þ

where a1 ¼ S1/S, a2 ¼ S2/S, a3 ¼ S3/S, S, S1, S2, S3 are the relevant triangle’s areas
(Liu et al., 2006). Then, all the background points are adjusted based on the movement of
the boundary points. Coordinates of the relevant triangle become E1ðx

0
1; y

0
1Þ, E2ðx

0
2; y

0
2Þ

and E3ðx
0
3; y

0
3Þ, and the new coordinates of point P can be denoted as:

x 0 ¼ a1x
0
1 þ a2x

0
2 þ a3x

0
3

y 0 ¼ a1 y
0
1 þ a2 y

0
2 þ a3 y

0
3

(
ð17Þ

Figure 1.
Global and close-up

views of a Delaunay graph
in the case of a

NACA0012 airfoil
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Figure 2 shows the moved cloud of points for a 308 airfoil pitch using a spring analogy
method described in Farhat et al. (1998) while Figure 3 shows the same using the Delaunay
graph mapping strategy. It is apparent that a better result can be achieved using
the Delaunay graph mapping strategy in order to ensure the flow field points following
the movements of the body boundaries without any iterations (Wang et al., 2010).

2.6 Validation of the fast AD adjusted meshless method
For validating the AD adjusted meshless method, a single RAE5243 airfoil in the flow
conditions at Mach number 0.75 and fixed lift coefficient as 0.45819 is tested using the
fast AD adjusted meshless method and the FVM described in Jameson et al. (1981).

Figure 4 shows both a global view and a close-up view of the cloud of points
distributed around a single RAE5243 airfoil. Figure 5 shows both the global view and
the close-up of the mesh distributed around the same airfoil. For the meshless method,
a total of 6,013 nodes were used in the global domain, whereas 11,576 mesh elements
were used for the mesh method. Figure 6 shows the comparison of surface
pressure coefficients for this test case using the fast AD adjusted meshless method and
the FVM.

In order to satisfy the fixed lift coefficient constraint at 0.45819, several iterations
based on the angle of attack have been done for both the fast AD adjusted meshless
method and the FVM. Figure 7 shows the comparison of convergence history for the last
iteration using the meshless method and the standard mesh method. As shown in the
histogram in Figure 8, the meshless method for the last iteration saves 71 percent
iteration cost compared to the FVM. In terms of the CPU time cost in total, for the
meshless method saves 52 percent of the cost compared to the FVM.

Figure 2.
Moved cloud of points for
a 308 airfoil pitch using the
spring analogy method
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3. Methodology: a HGA optimizer
3.1 HGA with multiple models
Modern design problems need suitable and efficient optimizers in order to find acceptable
solutions. In many realistic optimization problems, this requires the use of global
optimization algorithms. Among the most successful and widely used stochastic
approaches are the EAs (Sefrioui and Périaux, 2000; Pettey et al., 1987; Gorges-Schleuter,
1992; Schlierkamp-Voosen and Muhlenbein, 1994; Goldberg, 1989; Deb, 2002; Michalewicz,
1992; Miettinen, 1999) which are based on the Darwinian principle of evolution by

Figure 4.
Global and close-up views

of the cloud of points for
the RAE5243 airfoil

Figure 3.
Moved cloud of points for
a 308 pitching airfoil using

the Delaunay graph
mapping strategy
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natural selection. The EAs do not use information on the function gradients which
makes them ideal for multimodal and nonsmooth optimization. Furthermore, they can
be easily implemented as “black box” which makes their implementation straightforward.

The HGAs (Sefrioui and Périaux, 2000; Pettey et al., 1987; Gorges-Schleuter, 1992;
Schlierkamp-Voosen and Muhlenbein, 1994) are a special class of the island-model GAs.
They use a hierarchical topology (the topology used in this paper is shown in Figure 9).

Figure 6.
Comparison of surface
pressure coefficient
on the RAE5243 airfoil
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Unlike the standard multi-population GAs, they operate on different models of
varying accuracy. In addition, the genetic operators can vary between the different
layers. On the coarse bottom layer, the objective function evaluation can be cheaper
allowing an explorative algorithm; on the accurate top level, the algorithm can exploit
the high-quality solutions.

In this paper, three hierarchical layers with seven populations are used. As shown in
Figure 9, each node runs an individual GA with own specific input parameters. The top
layer consists of a single population with an exploitative GA, the middle layer consists
of two populations with intermediate GAs and the bottom layer consists of four
populations with highly explorative GAs. The interaction between the populations is
limited, only selected individuals are passed between the populations allowing a easy

Figure 8.
Comparisons of

convergence history in
terms of number of

iterations (left) and CPU
cost (right) in minutes for

the RAE5243 airfoil
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implementation in a parallelized environment. In addition, the hierarchical approach
allows the use of multi-fidelity flow analyzers as follows: high fidelity (precise) models
on the top layer; intermediate fidelity models on the middle layer and low fidelity
(coarse) models on the bottom layer.

The HGAs also differ from island-model GAs in the way how individuals migrate
between the populations. In this paper, the elite individuals from the lower populations
migrate upwards replacing the worst individuals. In order to maintain diversity,
the migration downwards is done using random individuals. After migrating, the
individuals are reevaluated in order to make their fitness values comparable to the other
individuals in the same layer.

3.2 Validation of the hierarchical approach: reconstruction of the position of a single
NACA0012 airfoil
In order to validate the hierarchical approach, it is implemented numerically on a
simple model reconstruction problem. Let one airfoil oscillate in pitch about its quarter
chord. The rotating angle a is the single design parameter. The objective function is
the minimization of the square error of the target and prescribed surface pressure
coefficient vectors Cp and C*p :

min f ðaÞ ¼
XM
i¼1

CpðaÞ2 C*p ða
*Þ

��� ���2
i

ð18Þ

where M is the total number of points distributed on the surface of the airfoil. The
allowed range is search space is a [ [25.08, 5.08]; a* ¼ 08 denotes the prescribed
angle position of the airfoil.

A HGA optimizer with multiple fidelity models is tested on the position
reconstruction problem and compared to the standard GA approach. For genetic
operators, the blending crossover (Eshelman and Schaffer, 1993) and Gaussian
mutation on real-valued chromosomes are used. Tournament selection is used with the
tournament value of 0.75 for selecting the parents. The number of offspring produced
in each generation is twice the size of the parent populations. The best offspring and
elites from the previous generation are selected for the next generation. Three elite
individuals are selected for upwards migration, and three random individuals for
downwards migration. The algorithms are terminated after 50 generations. The
algorithm parameter values are listed on Table I.

Figure 9.
Hierarchical topology
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For the high-fidelity model (Model 1), the fast AD adjusted meshless method and the
FVM approach are applied. The intermediate model (Model 2) uses hybrid
mesh/meshless method. Finally, the low-fidelity model (Model 3) uses the FVM. The
models use 290, 135, and 68 nodes on the NACA0012 airfoil, respectively.

Figure 10 shows convergence history of the standard and hierarchical approaches for
the fast AD adjusted meshless method. In Figure 11, the corresponding convergence
curves using the FVM approach are illustrated. Comparing the figures, one can readily
see the superior accuracy of the fast AD adjusted meshless method compared to the
FVM approach.

The total computational CPU time using GA and HGA with both the fast AD
adjusted meshless method and the FVM approach is shown in Figure 12. The final
objective function values are listed on Table II. Based on the superior efficiency and
accuracy, the fast AD adjusted meshless method is used in the following test case.

4. A CFD application: optimization of an SCB device on an RAE5243 airfoil
In this section, the hierarchical and standard GAs are applied to a real life optimization
problem. For the test case, a lift-constrained optimization problem using a SCB

HGA
GA Top Middle Bottom

Population size 30 10 20 (2 pop) 20 (4 pop)
Crossover rate 0.8 0.8 0.6 0.5
Mutation rate 0.01 0.01 0.02 0.10

Table I.
Parameter values

for the single-population
and HGA

Figure 10.
Algorithmic convergence

of the hierarchical and
standard GAs on the

oscillating NACA0012
airfoil case using the fast

AD adjusted meshless
method
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installed on an RAE5243 is used. The test case is described in detail in the Finnish
Design Test Case Database (test case description is available at the address: http://
jucri.jyu.fi/?q¼ testcase/4).

The objective is to minimize the drag based on the following flow conditions: Mach
number is 0.68 and the fixed lift coefficient is 0.82. Figure 13 shows the SCB and the
single RAE5243 airfoil baseline. Design variables are defined as bump height, position,

Figure 12.
Comparisons of CPU cost
(hours) for the NACA0012
airfoil using standard and
HGAs for both the fast AD
adjusted meshless method
and the FVM approach
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length and crest position, as shown in Figure 14. The allowed ranges of the design
variables are listed on Table III.

In order to minimize the drag properly, a suitable parameterization of the bump
shape is important. In this paper, Bézier splines (Hartmut et al., 2002) are used to define
the continuous shape of the SCB.

Both the standard and HGAs operate with the four design parameters and the relaxed
iteration based on the angle of attack update in order to satisfy the fixed lift coefficient
constraint. Figure 15 shows the Mach number distribution in the flow field with the
baseline design.

The standard GA optimization run gives the following final design parameter values for
the SCB: Xcrest/C¼0.691; Xbumprelative/C ¼ 0.0774; Xbumplength/C ¼ 0.201;
DYh/C ¼ 0.0296 and the corresponding Mach number distribution in the flow
field is shown in Figure 16. It can be seen that the shock is slightly weakened using the SCB.

Position reconstruction Final objective function value

GA (meshless) 3.60695 £ 102006

HGA (meshless) 3.60454 £ 102006

GA (mesh) 6.49966 £ 102005

HGA (mesh) 6.43906 £ 102005

Table II.
Final objective function
values obtained for the

standard and HGA using
the fast AD adjusted

meshless method and the
FVM approach

Figure 13.
RAE5243 with SCB
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The HGA optimization run gives the following final design parameter values for the
SCB: Xcrest/C ¼ 0.705; Xbumprelative/C ¼ 0.0869; Xbumplength/C ¼ 0.254;
DYh/C ¼ 0.0299 and the corresponding Mach number distribution is shown in
Figure 17. It can be seen that the shock is weakened using the SCB, and that the shock
is less prominent than in the standard GA case.

The final design parameter values are listed on Table III. The hierarchical approach
reduces the drag in this test case by 40.7 percent, compared to only 26 percent of the
standard approach (Table IV).

5. Conclusion and future
In this paper, the performances of the standard and HGAs are compared on two
optimization problems using an Euler flow analyzer with an innovative and accurate

Figure 15.
Mach number
distribution in the flow
field for the baseline

Parameter Min. Max.

Bump crest position Xcre/C 0 1
Bump starting point to crest Xbumprelative/C 0 Xbumplength/C
Bump total length Xbumplength/C 0 0.4
Bump height DYh/C 0 0.05

Table III.
Design parameters
for the bump shock
reduction test case

Figure 16.
Mach number distribution
in the flow field for the
optimized airfoil using
the standard GA
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fast AD adjusted meshless method, FVM and a hybrid mesh/meshless method. An
inverse position reconstruction problem is tested for a single oscillating NACA0012
airfoil using the standard GA and the HGA. Another, more realistic optimization
problem consists of drag reduction over a SCB located on a single RAE5243 airfoil
operating at transonic flight conditions.

The results demonstrate the superior efficiency and accuracy of the HGA approach
over the standard single-population approach, as illustrated in the SCB optimization
problem. This can be explained by two reasons. First, by implementing less computational
intensive models, computing time can be reduced. This is the underlying idea behind the
hierarchical approach. Second, the different levels of explorative behavior can feed the
optimization process with new results without losing the exploitative qualities. This is not
possible in a single-population GA which is limited to a single model and uniform genetic
parameters over the whole population. The results are consistent on both test cases,
confirming the validity of the hierarchical approach. Unfortunately computational time
restrictions prevented the in-depth study of the algorithmic performances.

Another finding in this paper is the suitability of the fast AD adjusted meshless
method for shape optimization. It did not only considerably improve the efficiency, but
also produced superior results in the inverse problem and in the drag reduction
optimization problem. Furthermore, the results indicate that different flow discretization
methods (in this paper, the fast AD adjusted meshless method, hybrid mesh/meshless
method, and the FVM) on the different levels of fidelity can work in tandem. This further
improves the versatility of the hierarchical approach, since it allows yet another way of
introducing variability into the models.

In the near future, our intention is to apply the methods for more complex
geometries and more realistic flow models using the mesh/meshless discretization
algorithms. Viscous effects such as boundary layers and turbulent Navier-Stokes flows

Figure 17.
Mach number distribution

in the flow field
for the optimized airfoil

using the HGA

Bump design Xcrest/C Xbumprelative/C Xbumplength/C DYhv/C Drag Drag reduction (%)

Baseline – – – – 0.02135 –
GA 0.691 0.0774 0.201 0.0296 0.01580 26
HGA 0.705 0.0869 0.254 0.0299 0.01266 40.7

Table IV.
SCB design parameters

obtained by the
standard and HGAs
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are currently under investigation. In addition, the hierarchical approach studied in this
paper will be expanded beyond the traditional GAs into more advanced optimization
methods such as the hybrid EAs.
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